We explore some aspects of phase transitions in cellular automata. We start recalling the standard formulation of the Monte Carlo approach for a discrete system. We then formulate the cellular automaton problem using simple models and illustrate different types of possible phase transitions: density phase transitions of first and second order, damage spreading, dilution of deterministic rules, asynchronism-induced transitions, synchronization phenomena, chaotic phase transitions and the influence of the topology.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Similar content being viewed by others
Symmetry and Complexity of Cellular Automata: Towards an Analytical Theory of Dynamical System
Chapter © 2013
A Lyapunov View on the Stability of Two-State Cellular Automata
Chapter © 2013
A survey of cellular automata: types, dynamics, non-uniformity and applications
Article 23 July 2018
References
- Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C 3, 307–320 (1992). https://doi.org/10.1142/S0129183192000257ArticleMathSciNetMATHGoogle Scholar
- Bagnoli, F.: On damage spreading transitions. J. Stat. Mech. 85, 151–164 (1996). https://doi.org/10.1007/BF02175559MathSciNetMATHGoogle Scholar
- Bagnoli, F., Cecconi, F.: Synchronization of non-chaotic dynamical systems. Phys. Lett. A 282, 9–17 (2001). https://doi.org/10.1016/S0375-9601(01)00154-2ArticleMathSciNetMATHGoogle Scholar
- Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponents of cellular automata. Phys. Rev. E 59, R107–R1310 (1999). https://doi.org/10.1103/PhysRevE.59.R1307ArticleMATHGoogle Scholar
- Bagnoli, F., Rechtman, R.: Synchronization universality classes and stability of smooth coupled map lattices. Phys. Rev. E 73, 026202 (2006). https://doi.org/10.1103/PhysRevE.73.026202ArticleGoogle Scholar
- Bagnoli, F., Rechtman, R.: Topological bifurcations in a model society of reasonable contrarians. Phys. Rev. E 88, 062914 (2013). https://doi.org/10.1103/PhysRevE.88.062914
- Bagnoli, F., Baroni, L., Palmerini, P.: Synchronization and directed percolation in coupled map lattices. Phys. Rev. E. 59, 409–416 (1999). https://doi.org/10.1103/PhysRevE.59.409ArticleGoogle Scholar
- Bagnoli, F., Boccara, N., Rechtman, R.: Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys. Rev. E 63, 046116 (2001). https://doi.org/10.1103/PhysRevE.63.046116ArticleGoogle Scholar
- Derrida, B.: Dynamical phase transitions in spin models and automata. In: Van Beijeren, H. (ed.) Fundamental Problems in Statistical Mechanics VII, pp. 273–309. Elsevier Science Publisher, Amsterdam (1990) Google Scholar
- Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53, 311–314 (1984). https://doi.org/10.1103/PhysRevLett. 53.311ArticleMathSciNetMATHGoogle Scholar
- Fatès, N.: Asynchronism induces second order phase transitions in elementary cellular automata. J. Cell. Autom. 4, 21–38 (2009) MathSciNetMATHGoogle Scholar
- Fatès, N.: A guided tour of asynchronous cellular automata. J. Cell. Autom. 9, 387–416 (2014) MathSciNetMATHGoogle Scholar
- Fukś, H., Fatès, N.: Local structure approximation as a predictor of second order phase transitions in asynchronous cellular automata. Nat. Comput. 14(4), 507–522 (2015) ArticleMathSciNetGoogle Scholar
- Grassberger, P.: On phase transitions in Schlögl’s second model. Z. Phys. B 47, 365 (1982) ArticleMathSciNetGoogle Scholar
- Grassberger, P.: Synchronization of coupled systems with spatiotemporal chaos. Phys. Rev. E 59, R2520–R2524 (1999). https://doi.org/10.1103/PhysRevE.59.R2520ArticleGoogle Scholar
- Gutowitz, H.A., Victor, J.D., Knight, B.K.: Local structure theory for cellular automata. Physica 28D, 18–48 (1987) MathSciNetMATHGoogle Scholar
- Henkel, M., Hinrichsen, H., Lübeck, S.: Non-Equilibrium Phase Transitions Volume 1: Absorbing Phase Transitions. Springer Science, Dordrecht (2008) Google Scholar
- Hinrichsen, H., Weitz, J.S., Domany, E.: An algorithm-independent definition of damage spreading, application to directed percolation. J. Stat. Phys. 88, 617–636 (1997) ArticleMATHGoogle Scholar
- Huang, K.: Statistical Mechanics. Wiley, New York (1963) Google Scholar
- Kardar, G.P.M., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986) ArticleMATHGoogle Scholar
- Janssen, H.K.: On the nonequilibrium phase transition in reaction-diffusion system with an absorbing stationary state. Z. Phys. B 42, 151 (1981) ArticleGoogle Scholar
- Kinzel, W.: Directed percolation. In: Adler, J., Zallen, R. Deutscher, G. (eds.) Percolation Structures and Processes. Annals of the Israel Physical Society, vol. 5, p. 425 (AIP, New York, 1983) Google Scholar
- Kinzel, W.: Phase transition of cellular automata. Z. Phys. B 58, 229–244 (1985). https://doi.org/10.1007/BF01309255
- Muñoz, M.A., Hwa, T.: On nonlinear diffusion with multiplicative noise. Europhys. Lett. 41, 147–152 (1998) ArticleGoogle Scholar
- Tu, Y., Grinstein, G., Muñoz, M.A.: Systems with multiplicative noise: critical behavior from KPZ equation and numerics. Phys. Rev. Lett. 78, 274–277 (1997) ArticleGoogle Scholar
- Tomé, T., de Oliveira, M.J.: Renormalization group of the Domany-Kinzel cellular automaton. Phys. Rev. E 55, 4000–4004 (1997). https://doi.org/10.1103/PhysRevE.55.4000ArticleGoogle Scholar
- Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). https://doi.org/10.1038/30918ArticleMATHGoogle Scholar
- Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983). https://doi.org/10.1103/RevModPhys. 55.601ArticleMathSciNetMATHGoogle Scholar
Acknowledgements
This work was partially supported by EU projects 288021 (EINS – Network of Excellence in Internet Science) and project PAPIIT-DGAPA-UNAM IN109213.
Author information
Authors and Affiliations
- Department of Physics and Astronomy and CSDC, University of Florence, via G. Sansone 1, 50019, Florence, Italy Franco Bagnoli
- INFN, sez. Firenze, Sesto Fiorentino, Italy Franco Bagnoli
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apdo. Postal 34, 62580, Temixco, MOR, Mexico Raúl Rechtman
- Franco Bagnoli